metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Ethylenediamine- $\kappa^2 N, N'$)bis[3-(2pyridyl)-5-(4-pyridyl)-1,2,4-triazolato- $\kappa^2 N^2, N^3$]zinc(II) methanol solvate dihydrate

Lin Cheng,^a* Yan-Yan Sun,^b Ya-Wen Zhang^b and Jian-Quan Wang^a

^aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China, and ^bDepartment of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 211189, People's Republic of China Correspondence e-mail: cep02chl@yahoo.com.cn

Received 4 December 2008; accepted 14 January 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.055; wR factor = 0.130; data-to-parameter ratio = 14.5.

The asymmetric unit of the title compound, $[Zn(C_{12}H_8N_5)_2(C_2H_8N_2)]\cdot CH_3OH\cdot 2H_2O$, contains a Zn^{II} cation, octahedrally coordinated by two 3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazolate anions, a chelating ethane-1,2-diamine molecule, a methanol solvent molecule, and two crystal water molecules. In the crystal packing, complex molecules are linked by hydrogen bonds into a two-dimensional layer.

Related literature

For related structures, see: Wang *et al.* (2005). For general background, see: Kesanli & Lin (2003).

Experimental

Crystal data [Zn(C₁₂H₈N₅)₂(C₂H₈N₂)]·CH₄O·-2H₂O

 $M_r = 638.02$ Triclinic, $P\overline{1}$

a = 8.3323 (8) Å	$V = 1457.3 (2) \text{ Å}^{3}$
b = 13.0268 (12) Å	Z = 2
c = 14.9444 (14) Å	Mo K\alpha radiation
$\alpha = 66.404 (2)^{\circ}$	$\mu = 0.90 \text{ mm}^{-1}$
$\beta = 79.751 (2)^{\circ}$	T = 293 (2) K
$\gamma = 81.437 (2)^{\circ}$	$0.25 \times 0.22 \times 0.16 \text{ mm}$
Data collection	
Bruker APEX CCD diffractometer	11395 measured reflections
Absorption correction: multi-scan	5643 independent reflections
(SADABS; Sheldrick, 2000)	4532 reflections with $I > 2\sigma(I)$
$T_{min} = 0.807, T_{max} = 0.870$	$R_{int} = 0.030$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.055$	388 parameters
wR(F ²) = 0.130	H-atom parameters constrained

Table 1

S = 1.04

5643 reflections

Selected bond lengths (Å).

Zn1-N7	2.096 (3)	Zn1-N12	2.148 (3)
Zn1-N2	2.103 (2)	Zn1-N1	2.269 (3)
Zn1-N11	2.133 (3)	Zn1-N6	2.293 (3)

 $\Delta \rho_{\rm max} = 0.61 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N11-H11 B ···O1 W^{i}	0.90	2.27	3.166 (4)	172
$N11 - H11C \cdot \cdot \cdot O2W^{ii}$	0.90	2.17	3.034 (4)	161
$N12 - H12B \cdot \cdot \cdot N5^{iii}$	0.90	2.54	3.321 (4)	146
$N12 - H12C \cdots O1W$	0.90	2.45	3.331 (4)	165
$O1 - H1B \cdot \cdot \cdot N4^{iv}$	0.90	2.02	2.897 (4)	163
$O1W - H1WA \cdots N3^{v}$	0.85	2.04	2.887 (4)	171
$O1W - H1WB \cdot \cdot \cdot N8$	0.85	2.09	2.859 (4)	150
$O2W - H2WA \cdots O1$	0.85	1.94	2.778 (4)	169
$O2W - H2WB \cdots O1W$	0.85	2.00	2.787 (4)	153
Summature and an (i)		(;;)		- 1. (:::)

-x + 2, -y + 2, -z + 1; (iv) -x + 1, -y + 2, -z + 1; (v) x - 1, y, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Program for Young Excellent Talents in Southeast University for a financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2199).

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Kesanli, B. & Lin, W. (2003). Coord. Chem. Rev. 246, 305-326.

Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, Y.-T., Tong, M.-L., Fan, H.-H., Wang, H.-Z. & Chen, X.-M. (2005). Dalton Trans. pp. 424–426.

Acta Cryst. (2009). E65, m206 [doi:10.1107/S1600536809001688]

(Ethylenediamine- $\kappa^2 N$, N')bis[3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazolato- $\kappa^2 N^2$, N^3]zinc(II) methanol solvate dihydrate

L. Cheng, Y.-Y. Sun, Y.-W. Zhang and J.-Q. Wang

Comment

Recently, there has been significant interest in the rational design and synthesis of chiral coordination polymers due to their potential functions, such as enantioselective separations and catalysis, which could be obtained by using chiral and achiral ligands (Kesanli *et al.* 2003; Wang *et al.* 2005). The use of achiral ligands is more attractive since usually such ligands are easier to be generated. Asymmetric ligands, as achiral ligands, have been widely used to construct those non-centrosymmetrical polymers. Unfortunately, here, we synthesed a centrosymmetrical complex $Zn(C_{12}H_8N_5)_2(C_2H_8N_2).CH_3OH.2H_2O$, with an asymmetric 3-(2-pyridyl)-5-(4-pyridyl)-4_H-1,2,4-triazole ligand.

The asymmetric unit of the title compound, contains one Zn^{II} cation, two 3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazolato anions, one chelating ethane-1,2-diamine, methanol solvate and two crystal water molecules. The complex is mononuclear with Zn^{II} in a distorted octahedral geometry of two chelating triazolato anions, and one chelating ethane-1,2-diamine ligand. Each triazolato group acts as a bidentate chelating ligand whereas the N atom of 4-pyridyl group does not take part in coordination (Table 1and Fig. 1). In the crystal, the complex molecules are linked by N—H…O, O—H…N and O—H…O hydrogen bonds into a two-dimensional layer (Table 2 and Fig. 2).

Experimental

A mixture of 3-(2-pyridyl)-5-(4-pyridyl)-4_H-1,2,4-triazole (0.0446 g, 0.2 mmol), ZnSO₄.7 H₂O (0.0288 g, 0.1 mmol), ethane-1,2-diamine (0.1 ml), methanol (2 ml) and water (2 ml) was stirred for 0.5 h at room temperature, and then filtered. The filtrate was allowed to evaporate slowly at room temperature. After 2 weeks, colourless needle crystals were obtained in 34% yield (0.0217 g) based on Zn^{II} .

Refinement

H atoms bonded to N and O atoms were located in a difference map with the distances of N—H = 0.90 and O—H = 0.85–0.90 Å. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with $U_{iso}(H) = 1.2$.

Figures

Fig. 1. Coordination environment of Zn^{II} with the 30% displacement ellipsoids.

Fig. 2. The two-dimensional hydrogen bond network of the title compound.

 $(Ethylenediamine-\kappa^2N,N')bis[3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazolato-\kappa^2N^2,N^3]zinc(II)\ methanol\ solvate\ dihydrate$

Crystal data	
$[Zn(C_{12}H_8N_5)_2(C_2H_8N_2)]$ ·CH ₃ O·2H ₂ O	Z = 2
$M_r = 638.02$	$F_{000} = 664$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.454 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 8.3323 (8) Å	Cell parameters from 783 reflections
b = 13.0268 (12) Å	$\theta = 2.5 - 28.0^{\circ}$
c = 14.9444 (14) Å	$\mu = 0.90 \text{ mm}^{-1}$
$\alpha = 66.404 \ (2)^{\circ}$	T = 293 (2) K
$\beta = 79.751 \ (2)^{\circ}$	Needle, colourless
$\gamma = 81.437 \ (2)^{\circ}$	$0.25\times0.22\times0.16~mm$
$V = 1457.3 (2) \text{ Å}^3$	

Data collection

Bruker APEX CCD diffractometer	5643 independent reflections
Radiation source: fine-focus sealed tube	4532 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.030$
T = 293(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)	$h = -10 \rightarrow 10$
$T_{\min} = 0.807, \ T_{\max} = 0.870$	$k = -16 \rightarrow 16$
11395 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.055$	H-atom parameters constrained
$wR(F^2) = 0.130$	$w = 1/[\sigma^2(F_o^2) + (0.0579P)^2 + 0.853P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
5643 reflections	$\Delta \rho_{max} = 0.61 \text{ e } \text{\AA}^{-3}$
388 parameters	$\Delta \rho_{min} = -0.56 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.71857 (5)	0.78434 (3)	0.29062 (3)	0.03871 (14)
C1	0.4382 (5)	0.9641 (3)	0.1713 (3)	0.0551 (10)
H1A	0.4027	0.9023	0.1664	0.066*
C2	0.3536 (5)	1.0670 (4)	0.1313 (3)	0.0636 (11)
H2A	0.2637	1.0748	0.0993	0.076*
C3	0.4042 (5)	1.1584 (3)	0.1393 (3)	0.0609 (11)
H3A	0.3492	1.2293	0.1127	0.073*
C4	0.5377 (4)	1.1433 (3)	0.1875 (3)	0.0477 (9)
H4A	0.5729	1.2036	0.1949	0.057*
C5	0.6183 (4)	1.0380 (3)	0.2245 (2)	0.0357 (7)
C6	0.7672 (4)	1.0124 (3)	0.2716 (2)	0.0350 (7)
C7	0.9746 (4)	1.0178 (3)	0.3288 (2)	0.0364 (7)
C8	1.0995 (4)	1.0544 (3)	0.3656 (2)	0.0378 (7)
C9	1.1963 (4)	0.9778 (3)	0.4322 (3)	0.0456 (8)
H9A	1.1866	0.9012	0.4534	0.055*
C10	1.3081 (4)	1.0159 (3)	0.4672 (3)	0.0549 (10)
H10A	1.3723	0.9627	0.5123	0.066*
C11	1.2366 (5)	1.1968 (3)	0.3747 (3)	0.0597 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H11A	1.2510	1.2728	0.3531	0.072*
C12	1.1207 (5)	1.1674 (3)	0.3365 (3)	0.0512 (9)
H12A	1.0575	1.2223	0.2918	0.061*
C13	1.0318 (4)	0.8471 (3)	0.1141 (3)	0.0522 (9)
H13A	1.0659	0.8844	0.1482	0.063*
C14	1.1280 (5)	0.8449 (3)	0.0311 (3)	0.0601 (11)
H14A	1.2243	0.8807	0.0088	0.072*
C15	1.0810 (5)	0.7890 (3)	-0.0194 (3)	0.0552 (10)
H15A	1.1451	0.7859	-0.0761	0.066*
C16	0.9368 (4)	0.7374 (3)	0.0155 (3)	0.0447 (8)
H16A	0.9026	0.6980	-0.0166	0.054*
C17	0.8445 (4)	0.7457 (3)	0.0990 (2)	0.0372 (7)
C18	0.6844 (4)	0.6996 (3)	0.1399 (2)	0.0360 (7)
C19	0.4638 (4)	0.6307 (3)	0.1630 (2)	0.0370 (7)
C20	0.3338 (4)	0.5731 (3)	0.1523 (3)	0.0389 (8)
C21	0.2038 (4)	0.5364 (3)	0.2252 (3)	0.0484 (9)
H21A	0.1938	0.5495	0.2828	0.058*
C22	0.0886 (5)	0.4799 (3)	0.2112 (3)	0.0583 (10)
H22A	0.0012	0.4566	0.2608	0.070*
C23	0.2181 (5)	0.4939 (4)	0.0620 (3)	0.0633 (11)
H23A	0.2245	0.4800	0.0051	0.076*
C24	0.3379 (5)	0.5521 (3)	0.0684 (3)	0.0527 (10)
H24A	0.4212	0.5771	0.0164	0.063*
C25	0.8006 (5)	0.6203 (3)	0.4815 (3)	0.0540 (10)
H25A	0.8431	0.6727	0.5008	0.065*
H25B	0.8377	0.5446	0.5230	0.065*
C26	0.6162 (5)	0.6348 (3)	0.4945 (3)	0.0562 (10)
H26A	0.5734	0.5796	0.4789	0.067*
H26B	0.5750	0.6239	0.5623	0.067*
N1	0.5690 (3)	0.9484 (2)	0.2168 (2)	0.0425 (7)
N2	0.8401 (3)	0.9090 (2)	0.3005 (2)	0.0379 (6)
N3	0.9767 (3)	0.9114 (2)	0.3379 (2)	0.0391 (6)
N4	0.8461 (3)	1.0852 (2)	0.2877 (2)	0.0384 (6)
N5	1.3297 (4)	1.1242 (3)	0.4403 (3)	0.0584 (9)
N6	0.8917 (3)	0.7990 (2)	0.1493 (2)	0.0425 (7)
N7	0.6034 (3)	0.7089 (2)	0.2217 (2)	0.0392 (6)
N8	0.4580 (3)	0.6639 (2)	0.2376 (2)	0.0405 (6)
N9	0.6030 (3)	0.6513 (2)	0.0994 (2)	0.0411 (7)
N10	0.0943 (4)	0.4566 (3)	0.1321 (3)	0.0618 (9)
N11	0.8616 (3)	0.6409 (2)	0.3777 (2)	0.0418 (7)
H11B	0.9644	0.6557	0.3761	0.050*
H11C	0.8363	0.5759	0.3779	0.050*
N12	0.5630(3)	0.7487 (2)	0.4287 (2)	0.0466 (7)
H12B	0.5435	0.7894	0.4666	0.056*
H12C	0.4597	0.7511	0.4173	0.056*
C27	0.3055 (11)	0.6293 (5)	0.7695 (7)	0.204 (5)
H27A	0.2189	0.6451	0.8151	0.245*
H27B	0.4091	0.6254	0.7908	0.245*
H27C	0.2926	0.5587	0.7666	0.245*

O1	0.2993 (5)	0.7199 (3)	0.6702 (3)	0.1036 (12)
H1B	0.2698	0.7879	0.6733	0.124*
O1W	0.2078 (3)	0.7151 (2)	0.37517 (18)	0.0555 (7)
H1WA	0.1489	0.7772	0.3615	0.067*
H1WB	0.2587	0.7179	0.3197	0.067*
O2W	0.1847 (4)	0.6019 (2)	0.5789 (2)	0.0810 (10)
H2WA	0.2278	0.6300	0.6105	0.097*
H2WB	0.1918	0.6143	0.5181	0.097*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0371 (2)	0.0371 (2)	0.0476 (2)	-0.00668 (16)	-0.01032 (17)	-0.01898 (18)
C1	0.052 (2)	0.050 (2)	0.069 (3)	-0.0071 (18)	-0.028 (2)	-0.020 (2)
C2	0.054 (2)	0.061 (3)	0.076 (3)	-0.001 (2)	-0.039 (2)	-0.016 (2)
C3	0.053 (2)	0.050 (2)	0.074 (3)	0.0077 (19)	-0.027 (2)	-0.014 (2)
C4	0.046 (2)	0.039 (2)	0.059 (2)	-0.0010 (16)	-0.0134 (18)	-0.0178 (17)
C5	0.0318 (17)	0.0397 (18)	0.0380 (17)	-0.0050 (14)	-0.0062 (14)	-0.0158 (15)
C6	0.0333 (17)	0.0350 (18)	0.0391 (17)	-0.0033 (14)	-0.0081 (14)	-0.0149 (14)
C7	0.0344 (18)	0.0375 (18)	0.0420 (18)	-0.0040 (14)	-0.0065 (14)	-0.0192 (15)
C8	0.0310 (17)	0.0443 (19)	0.0476 (19)	-0.0059 (14)	-0.0057 (15)	-0.0262 (16)
C9	0.0368 (19)	0.047 (2)	0.061 (2)	-0.0030 (16)	-0.0128 (17)	-0.0254 (18)
C10	0.042 (2)	0.064 (3)	0.068 (3)	0.0016 (19)	-0.0218 (19)	-0.031 (2)
C11	0.060 (3)	0.051 (2)	0.083 (3)	-0.013 (2)	-0.019 (2)	-0.035 (2)
C12	0.053 (2)	0.043 (2)	0.067 (2)	-0.0042 (17)	-0.0212 (19)	-0.0254 (19)
C13	0.044 (2)	0.052 (2)	0.064 (2)	-0.0126 (18)	-0.0050 (19)	-0.024 (2)
C14	0.041 (2)	0.063 (3)	0.070 (3)	-0.0196 (19)	0.003 (2)	-0.019 (2)
C15	0.043 (2)	0.066 (3)	0.055 (2)	-0.0031 (19)	0.0010 (18)	-0.025 (2)
C16	0.0366 (19)	0.053 (2)	0.047 (2)	-0.0043 (16)	-0.0047 (15)	-0.0214 (17)
C17	0.0324 (17)	0.0382 (18)	0.0387 (17)	-0.0017 (14)	-0.0086 (14)	-0.0112 (15)
C18	0.0346 (17)	0.0354 (18)	0.0393 (17)	-0.0014 (14)	-0.0034 (14)	-0.0168 (15)
C19	0.0341 (18)	0.0350 (18)	0.0436 (18)	-0.0027 (14)	-0.0032 (15)	-0.0177 (15)
C20	0.0337 (18)	0.0342 (18)	0.052 (2)	0.0006 (14)	-0.0074 (15)	-0.0208 (16)
C21	0.045 (2)	0.053 (2)	0.052 (2)	-0.0113 (17)	-0.0020 (17)	-0.0247 (18)
C22	0.047 (2)	0.058 (2)	0.070 (3)	-0.0210 (19)	0.003 (2)	-0.023 (2)
C23	0.064 (3)	0.069 (3)	0.076 (3)	-0.016 (2)	-0.006 (2)	-0.046 (2)
C24	0.046 (2)	0.062 (2)	0.064 (2)	-0.0148 (19)	0.0027 (18)	-0.039 (2)
C25	0.055 (2)	0.054 (2)	0.050 (2)	0.0056 (19)	-0.0161 (18)	-0.0174 (19)
C26	0.054 (2)	0.059 (3)	0.053 (2)	-0.014 (2)	0.0035 (19)	-0.019 (2)
N1	0.0390 (16)	0.0405 (16)	0.0522 (17)	-0.0042 (13)	-0.0187 (13)	-0.0166 (14)
N2	0.0332 (15)	0.0340 (15)	0.0532 (17)	-0.0018 (12)	-0.0155 (13)	-0.0199 (13)
N3	0.0335 (15)	0.0385 (16)	0.0516 (17)	-0.0014 (12)	-0.0130 (13)	-0.0212 (13)
N4	0.0373 (15)	0.0340 (15)	0.0491 (16)	-0.0019 (12)	-0.0140 (13)	-0.0181 (13)
N5	0.0494 (19)	0.066 (2)	0.076 (2)	-0.0097 (17)	-0.0190 (17)	-0.0386 (19)
N6	0.0380 (16)	0.0419 (16)	0.0487 (17)	-0.0085 (13)	-0.0056 (13)	-0.0169 (14)
N7	0.0336 (15)	0.0425 (16)	0.0463 (16)	-0.0072 (12)	-0.0037 (12)	-0.0213 (13)
N8	0.0341 (15)	0.0464 (17)	0.0470 (16)	-0.0084 (13)	0.0008 (12)	-0.0252 (14)
N9	0.0357 (15)	0.0474 (17)	0.0475 (16)	-0.0072 (13)	-0.0029 (13)	-0.0254 (14)

N10	0.054(2)	0.061(2)	0.084(2)	-0.0211(17)	-0.0054 (19)	-0.038(2)
N10	0.034(2)	0.001(2)	0.034(2)	-0.0051(17)	-0.0034(13)	-0.0188(13)
N12	0.0400(10)	0.0551(15)	0.0550(17)	-0.0031(12)	-0.0033(13)	-0.0313(16)
C27	0.0505(10)	0.0534(17)	0.0303(13)	0.0042(14)	-0.219(10)	-0.048(6)
01	0.230(10) 0.139(3)	0.007(4)	0.333(13) 0.123(3)	0.000(5)	-0.044(3)	-0.051(2)
O1W	0.139(3)	0.000(2)	0.123(3)	0.013(2)	-0.0001(12)	-0.0199(13)
O1W O2W	0.0314(10) 0.119(3)	0.0535(10)	0.0523(13) 0.0630(19)	-0.0367(12)	-0.0001(12)	-0.0249(16)
02 ₩	0.119 (3)	0.008 (2)	0.0050 (19)	0.0507 (19)	0.0044 (18)	0.0249 (10)
Geometric param	neters (Å, °)					
Zn1—N7		2.096 (3)	C16	—H16A	0.930	0
Zn1—N2		2.103 (2)	C17	—N6	1.343	(4)
Zn1—N11		2.133 (3)	C17	—C18	1.473	(4)
Zn1—N12		2.148 (3)	C18	—N7	1.329	(4)
Zn1—N1		2.269 (3)	C18	—N9	1.341	(4)
Zn1—N6		2.293 (3)	C19	—N8	1.340	(4)
C1—N1		1.334 (4)	C19	—N9	1.347	(4)
C1—C2		1.370 (5)	C19	—C20	1.470	(4)
C1—H1A		0.9300	C20	—C24	1.379	(5)
C2—C3		1.376 (6)	C20	—C21	1.381	(5)
C2—H2A		0.9300	C21	—C22	1.382	(5)
C3—C4		1.379 (5)	C21	—H21A	0.930	0
С3—НЗА		0.9300	C22	—N10	1.324	(5)
C4—C5		1.374 (5)	C22	—H22A	0.930	0
C4—H4A		0.9300	C23	—N10	1.325	(5)
C5—N1		1.347 (4)	C23	—C24	1.377	(5)
C5—C6		1.465 (4)	C23	—Н23А	0.930	0
C6—N2		1.324 (4)	C24	—H24A	0.930	0
C6—N4		1.347 (4)	C25	—N11	1.470	(4)
C7—N3		1.335 (4)	C25	—C26	1.507	(5)
C7—N4		1.348 (4)	C25	—H25A	0.970	0
С7—С8		1.475 (4)	C25	—Н25В	0.970	0
С8—С9		1.374 (5)	C26	—N12	1.468	(5)
C8—C12		1.387 (5)	C26	—Н26А	0.970	0
C9—C10		1.380 (5)	C26	—Н26В	0.970	0
С9—Н9А		0.9300	N2-	N3	1.364	(3)
C10—N5		1.335 (5)	N7-	N8	1.366	(4)
C10—H10A		0.9300	N11	—H11B	0.899	9
C11—N5		1.330 (5)	N11	—H11C	0.900	1
C11—C12		1.374 (5)	N12	—H12B	0.900	6
C11—H11A		0.9300	N12	—Н12С	0.899	9
C12—H12A		0.9300	C27	01	1.485	(8)
C13—N6		1.330 (4)	C27	—Н27А	0.960	0
C13—C14		1.361 (5)	C27	—Н27В	0.960	0
C13—H13A		0.9300	C27	—Н27С	0.960	0
C14—C15		1.372 (5)	01-	-H1B	0.900	2
C14—H14A		0.9300	O1W	W—H1WA	0.850	0
C15—C16		1.379 (5)	O1W	W—H1WB	0.850	6
C15—H15A		0.9300	O2W	W—H2WA	0.850	1

C16—C17	1.379 (5)	O2W—H2WB	0.8506
N7—Zn1—N2	156.47 (11)	N8—C19—N9	114.0 (3)
N7—Zn1—N11	99.48 (10)	N8—C19—C20	123.6 (3)
N2—Zn1—N11	98.05 (10)	N9—C19—C20	122.4 (3)
N7—Zn1—N12	101.58 (10)	C24—C20—C21	116.9 (3)
N2—Zn1—N12	96.28 (11)	C24—C20—C19	121.0 (3)
N11—Zn1—N12	81.99 (11)	C21—C20—C19	122.2 (3)
N7—Zn1—N1	89.05 (10)	C20—C21—C22	119.0 (3)
N2—Zn1—N1	74.90 (10)	C20—C21—H21A	120.5
N11—Zn1—N1	170.61 (10)	C22—C21—H21A	120.5
N12—Zn1—N1	92.50 (11)	N10-C22-C21	124.5 (4)
N7—Zn1—N6	75.35 (10)	N10-C22-H22A	117.7
N2—Zn1—N6	88.45 (10)	C21—C22—H22A	117.7
N11—Zn1—N6	92.21 (10)	N10-C23-C24	124.0 (4)
N12—Zn1—N6	172.96 (10)	N10—C23—H23A	118.0
N1—Zn1—N6	93.77 (10)	С24—С23—Н23А	118.0
N1—C1—C2	123.1 (3)	C23—C24—C20	119.8 (4)
N1—C1—H1A	118.5	C23—C24—H24A	120.1
C2—C1—H1A	118.5	C20—C24—H24A	120.1
C1—C2—C3	118.7 (3)	N11—C25—C26	109.3 (3)
C1—C2—H2A	120.6	N11—C25—H25A	109.8
С3—С2—Н2А	120.6	C26—C25—H25A	109.8
C2—C3—C4	118.9 (4)	N11—C25—H25B	109.8
С2—С3—НЗА	120.5	С26—С25—Н25В	109.8
С4—С3—НЗА	120.5	H25A—C25—H25B	108.3
C5—C4—C3	119.2 (3)	N12—C26—C25	108.8 (3)
С5—С4—Н4А	120.4	N12—C26—H26A	109.9
С3—С4—Н4А	120.4	C25—C26—H26A	109.9
N1—C5—C4	122.0 (3)	N12—C26—H26B	109.9
N1-C5-C6	113.5 (3)	C25—C26—H26B	109.9
C4—C5—C6	124.5 (3)	H26A—C26—H26B	108.3
N2—C6—N4	113.5 (3)	C1—N1—C5	118.1 (3)
N2—C6—C5	119.7 (3)	C1—N1—Zn1	127.8 (2)
N4—C6—C5	126.8 (3)	C5—N1—Zn1	114.1 (2)
N3—C7—N4	114.2 (3)	C6—N2—N3	106.6 (2)
N3—C7—C8	121.6 (3)	C6—N2—Zn1	117.1 (2)
N4—C7—C8	124.1 (3)	N3—N2—Zn1	136.0 (2)
C9—C8—C12	117.5 (3)	C7—N3—N2	104.7 (3)
C9—C8—C7	121.1 (3)	C6—N4—C7	101.1 (3)
C12—C8—C7	121.4 (3)	C11—N5—C10	115.7 (3)
C8—C9—C10	119.3 (3)	C13—N6—C17	117.3 (3)
С8—С9—Н9А	120.4	C13—N6—Zn1	129.4 (2)
C10—C9—H9A	120.4	C17—N6—Zn1	113.2 (2)
N5—C10—C9	124.1 (4)	C18—N7—N8	106.3 (2)
N5-C10-H10A	117.9	C18—N7—Zn1	117.0 (2)
C9—C10—H10A	117.9	N8—N7—Zn1	136.7 (2)
N5-C11-C12	124.6 (4)	C19—N8—N7	104.7 (2)
N5-C11-H11A	117.7	C18—N9—C19	101.3 (3)
C12—C11—H11A	117.7	C22—N10—C23	115.9 (3)
			× /

C11—C12—C8	118.9 (4)	C25—N11—Zn1	107.1 (2)
C11—C12—H12A	120.6	C25—N11—H11B	99.2
C8—C12—H12A	120.6	Zn1—N11—H11B	112.6
N6—C13—C14	123.6 (4)	C25—N11—H11C	97.5
N6-C13-H13A	118.2	Zn1—N11—H11C	113.1
C14—C13—H13A	118.2	H11B—N11—H11C	123.5
C13—C14—C15	119.1 (4)	C26—N12—Zn1	107.1 (2)
C13—C14—H14A	120.5	C26—N12—H12B	104.9
C15—C14—H14A	120.5	Zn1—N12—H12B	127.8
C14—C15—C16	118.8 (4)	C26—N12—H12C	110.1
C14—C15—H15A	120.6	Zn1—N12—H12C	107.7
C16-C15-H15A	120.6	H12B—N12—H12C	98.5
C17—C16—C15	118.5 (3)	O1—C27—H27A	109.5
С17—С16—Н16А	120.7	O1—C27—H27B	109.5
C15—C16—H16A	120.7	H27A—C27—H27B	109.5
N6—C17—C16	122.7 (3)	O1—C27—H27C	109.5
N6-C17-C18	113.9 (3)	H27A—C27—H27C	109.5
C16—C17—C18	123.4 (3)	H27B—C27—H27C	109.5
N7—C18—N9	113.8 (3)	C27—O1—H1B	112.0
N7—C18—C17	120.1 (3)	H1WA—O1W—H1WB	104.0
N9—C18—C17	126.0 (3)	H2WA—O2W—H2WB	133.0

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N11—H11B…O1W ⁱ	0.90	2.27	3.166 (4)	172
N11—H11C····O2W ⁱⁱ	0.90	2.17	3.034 (4)	161
N12—H12B····N5 ⁱⁱⁱ	0.90	2.54	3.321 (4)	146
N12—H12C···O1W	0.90	2.45	3.331 (4)	165
O1—H1B…N4 ^{iv}	0.90	2.02	2.897 (4)	163
O1W—H1WA…N3 ^v	0.85	2.04	2.887 (4)	171
O1W—H1WB…N8	0.85	2.09	2.859 (4)	150
O2W—H2WA…O1	0.85	1.94	2.778 (4)	169
O2W—H2WB…O1W	0.85	2.00	2.787 (4)	153

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+2, -z+1; (iv) -x+1, -y+2, -z+1; (v) x-1, y, z.

Fig. 1

Fig. 2

